Estrogen-nucleic acid adducts: guanine is major site for interaction between 3,4-estrone quinone and COIII gene.

نویسندگان

  • D Roy
  • Y J Abul-Hajj
چکیده

The carcinogenicity of estrogens in rodents and man has been attributed to either alkylation of cellular macromolecules and/or redox-cycling, generation of active radicals and DNA damage. Metabolic activation of estradiol leading to the formation of catechol estrogens is believed to be a prerequisite for its genotoxic effects. 4-Hydroxyestradiol is a potent inducer of tumors in hamsters. Previous studies have shown that 3,4-estrone quinone (3,4-EQ) can redox-cycle and is capable of inducing exclusively single strand DNA breaks in MCF-7 breast cancer cells, as well as react with various nucleophiles including amino acids and nucleic acids to give Michael addition products. In this paper we examined the nature of the interaction of 3,4-EQ with COIII gene and analysed the estrogen-DNA adducts by 32P-post-labeling. The reaction of 3,4-EQ with the COIII gene followed by polymerase arrest assay showed several stop sites in which guanine was preferentially attacked by 3,4-EQ and, to a lesser extent, with Ade, Cyt and Thy. 32P-Post-labeling analysis of the reaction of 3,4-EQ with COIII gene gave one major adduct which was found to be identical to that obtained from reaction of dGMP with 3,4-EQ. The observation that obstruction of in vitro replication of COIII template bound to 3,4-EQ suggests that estrogen quinone adducted lesions can arrest DNA polymerase. These results indicate that 3,4-EQ may be genotoxic and may provide one possible explanation for the carcinogenic effects of estrogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced formation of depurinating estrogen-DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells.

Sulforaphane (SFN) is a potent inducer of detoxication enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase (GST) via the Kelch-like erythroid-derived protein with CNC homology-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signaling pathway. NQO1 reduces the carcinogenic estrogen metabolite, catechol estrogen-3,4-quinone, whereas GSTs detoxify it th...

متن کامل

Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo.

Studies of estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA can generate the critical mutations initiating breast, prostate and other cancers. The endogenous estrogens estrone (E1) and estradiol (E2) are oxidized to ...

متن کامل

Electrochemical and Spectroscopic Studies of Interactions of Mn(III) Complexes with Nucleic Bases and Nucleosides

The complexes of Mn(OAc)3 and/or Mn(acac)3 with nucleic bases and nucleosides (adenine, guanine, xanthine, adenosine and guanosine) have been synthesized in nonaqueous solution. Polarographic and spectroscopic (IR and Visible) methods have been used to establish the active site(s) on the imidazole and pyrimidine rings in the nucleic bases and nucleosides for the intera...

متن کامل

Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators.

Cancer is a disease that begins with mutation of critical genes: oncogenes and tumor suppressor genes. Our research on carcinogenic aromatic hydrocarbons indicates that depurinating hydrocarbon-DNA adducts generate oncogenic mutations found in mouse skin papillomas (Proc. Natl. Acad. Sci. USA 92:10422, 1995). These mutations arise by mis-replication of unrepaired apurinic sites derived from the...

متن کامل

The unifying mechanism in the initiation and prevention of breast and other human cancers

Exposure to estrogens is a risk factor for human breast cancer. Experiments on estrogen metabolism, formation of DNA adducts, carcinogenicity, mutagenicity and cell transformation led to and support the hypothesis that reaction of specific estrogen metabolites, catechol estrogen-3,4-quinones, with DNA can generate the critical mutations to initiate breast, prostate and other human cancers. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 1997